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Large scale optimization has been driven mostly by Stochastic Gradient Descent (SGD) based algorithms especially
in machine learning problems. The interplay between optimization and generalization is therefore crucial. Under
stochasticity, the generalization error can be broken down explicitly into two quantities, “Bias” and “Variance”.
Here is an attempt to help the reader understand the operator view-point of analyzing iterative optimization algo-
rithms, one of the critical mathematical tools involved in their tight analysis. The authors analyze Averaged SGD
on a simple toy model - Least Mean Square. The article is based on the novel techniques developed in [1].

A detailed asymptotic analysis of the averaged constant step size SGD algorithm for Least Mean Square has been
done in [1] which has been presented in this article. We will first set up the problem and the algorithm formally for
the reader’s convenience.

1 Problem Setup

Throughout the article, we will follow certain conventions listed below.

• If x ∈ Rd and y ∈ R are random variables, we denote H = E
[
xxT

]
as its second order moment matrix.

• The smallest eigenvalue of H is µ and is assumed to be strictly positive. Therefore, H is invertible.

• M(Rd) denotes the set of all linear operators over Rd which is isomorphic to the space of matrices in Rd×d,
and similarly I = M(M(Rd)) denotes an endomorphism on the space of matrices over Rd. Therefore if
T ∈ I, then it can be thought of as a matrix of matrices that is essentially in Rd×d×d×d. Just like matrix
multiplication, we can define tensor-matrix multiplication as

(TA) =
∑

(k,l)∈[d]×[d]

T(i,j),(k,l)Ak,l (1.0.1)

where A ∈ Rd×d.

• We can define operator norms of tensors restricted to symmetric matrices with respect to Frobenius norm as

‖T ‖op = sup
V∈S(Rd),‖V‖F=1

‖TV‖F (1.0.2)

where S(Rd) is the set of all symmetric matrices on Rd.

• We denote TL and TR as the left and right matrix multiplication operators respectively of the matrix T ∈ Rd×d,
defined as

∀ (i, j), (k, l), (TL)(i,j),(k,l) = δj,lTi,k

∀ (i, j), (k, l), (TR)(i,j),(k,l) = δi,kTj,l

One can use the tensor-matrix multiplication definition (1.0.1) to show that the above definitions of TL and
TR of left and right multiplication operators of T satisfy

TLA = TA

TRA = AT

(1.0.3)
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• Let a linear operator on matrices be defined as

MA = E
[
(xTAx)xxT

]
(1.0.4)

then the elements in M can be written as

M(i,j),(k,l) = E
[
x(i)x(j)x(k)x(l)

]
(1.0.5)

making M, the fourth order moment tensor of the random variable x ∈ Rd.

• Define T = HL +HR − ηM with µT its smallest eigenvalue.

• ρT = ‖I− ηT ‖op, ρH = ‖I− ηH‖op and ρ = max {ρT , ρH}.

• ηmax is the supremum on the set {η > 0} verifying, ∀ A ∈ S(Rd), 2Tr
[
ATHA

]
− ηE

[(
xTAx

)2]
> 0.

The below facts can be shown as shown in [1] as lemmas.

1. ηmax ≤ 2
Tr[H] ,

2. I− ηT � −I when d > 1, and I− ηT � 0 when d = 1, when 0 < η ≤ ηmax,

3. T � 0 when 0 < η ≤ ηmax,

4. When d > 1 and 0 < η < ηmax, we have ρ ≤ 1 − 2η
(

1− η
ηmax

)
, if 1 > η

ηmax
≥ 1

2 and ρ ≤ 1 − ηµ otherwise.

When d = 1, we have ρ ≤ max
{
|1− ηµ| , 1− 2η

(
1− η

ηmax

)
µ
}

. In any cases ρ < 1 as soon as η < ηmax.

The Least Mean Squares problem is to minimize the expected quadratic loss

f(w) = E
[

1

2

∥∥xTw − y
∥∥2
2

]
(1.0.6)

Let w∗ be the optimum solution to the problem (1.0.6). Because H is invertible, so f(w) has a unique minimum
that is f∗ = f(w∗). The problem has 2 regimes based on the size of the domain of the random variables x and y.

1. Single pass through the data, where each example is seen once and considered as an i.i.d. sample.

2. Multiple passes through the data, which is of interest when the number of data points is finite.

The first case is explicitly studied in [1] which we discuss in detail from here on.

1.1 Averaged SGD with constant step size

Let w0 ∈ Rd be an initial point and at each iteration i, we sample an i.i.d. instance (xi, yi) of x and y respectively.
Let η be the constant step size for an SGD update

wi = wi−1 − η∇f(wi−1; xi, yi)

= wi−1 − ηxi(xTi wi−1 − yi)

w̄i =
1

i+ 1

i∑
k=0

wk

=
1

i+ 1
wi +

i

i+ 1
w̄i−1 (1.1.1)

Let us define a few more variables

• εi = xTi w∗ − yi =⇒ E [εixi] = 0 since ∇f(w∗) = 0.

• ∆i = wi −w∗, ∆̄i = w̄i −w∗
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Therefore we get
∆i = (I− ηxixTi )∆i−1 + ηεixi (1.1.2)

an operator style of writing a recursive update rule.

Let us introduce Mk,j =

(
j∏

i=k+1

(
I− ηxixTi

))T
∈ Rd×d as a compact matrix operator acting on the terms in (1.1.2).

Upon unrolling the recursion (1.1.2), we get

∆n = η

n∑
k=1

Mk,nxkεk +M0,n∆0

∆̄n =
η

n

n−1∑
j=0

j∑
k=1

Mk,jxkεk +
1

n

n−1∑
j=0

M0,j∆0

=
η

n

n−1∑
k=1

n−1∑
j=k

Mk,j

xkεk +
1

n

n−1∑
j=0

M0,j∆0 (Re-arranging summations) (1.1.3)

We can clearly see that the error ∆̄n can be decomposed in two terms, one dominated by ∆0 and the other depending
on the noise εk’s. The cross term in E

[
∆̄n∆̄T

n

]
can be separately written as

η

n2
E
[
Mk,jxkεk∆T

0 M0,p

]
(1.1.4)

When p < k, then we take the expectation inside and write the above term as

η

n2
E
[
Mk,jxkεk∆T

0 M0,p

]
=

η

n2
Mk,jE [xkεk] ∆T

0 M0,p = 0

Else, xk appears in M0,p and we will have a term that can be expressed as G
(
E
[
xkεk∆T

0 xkx
T
k

])
where G is a linear

operator, which is 0 as soon as

∀ 1 ≤ i, j, k ≤ d, E
[
x(i)x(j)x(k)ε

]
= 0

Because we consider the least squares problem, we have

fn − f∗ =
1

2
E
[
(w̄n −w∗)TE

[
xxT

]
(w̄n −w∗)

]
= Tr

[
HE

[
∆̄n∆̄T

n

]]
(1.1.5)

Since we want a Bias-Variance trade-off, we achieve it by considering two scenarios

1. The bias term ∆bias which is the covariance matrix when εi = 0 ∀ i.

2. The variance term ∆variance which is the covariance matrix when we start at the solution itself, ∆0 = 0.

Therefore,

fn − f∗ = Tr
[
H∆bias

]
+ Tr

[
H∆variance

]
(1.1.6)

Even when it is not true, we can still use Minkowski’s inequality to have

f totaln − f∗ ≤ 2(fbiasn − f∗) + 2(fvariancen − f∗) (1.1.7)

1.2 Bias term

Assuming εi = 0 ∀ i, we have

∆̄n =
1

n

n−1∑
j=0

M0,j∆0 (1.2.1)
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Therefore,

E
[
∆̄n∆̄T

n

]
=

1

n2

n−1∑
i=0

n−1∑
j=0

E
[
M0,i∆0∆T

0 MT
0,j

]

=
1

n2

n−1∑
i=0

E

M0,i∆0∆T
0 MT

0,i +

n−1∑
j=i+1

M0,i∆0∆T
0 MT

0,iM
T
i,j +

i−1∑
j=0

Mj,iM0,j∆0∆T
0 MT

0,j


=

1

n2

n−1∑
i=0

E
[
M0,i∆0∆T

0 MT
0,i

]
+

n−1∑
j=i+1

E
[
M0,i∆0∆T

0 MT
0,i

]
(I− ηH)j−i +

i−1∑
j=0

(I− ηH)i−jE
[
M0,j∆0∆T

0 MT
0,j

]
=

1

n2

n−1∑
i=0

E
[
M0,i∆0∆T

0 MT
0,i

]
+

n−1∑
j=i+1

E
[
M0,i∆0∆T

0 MT
0,i

]
(I− ηH)j−i


+

1

n2

n−1∑
i=0

i−1∑
j=0

(I− ηH)i−jE
[
M0,j∆0∆T

0 MT
0,j

]
=

1

n2

n−1∑
i=0

E
[
M0,i∆0∆T

0 MT
0,i

]
+

n−1∑
j=i+1

E
[
M0,i∆0∆T

0 MT
0,i

]
(I− ηH)j−i


+

1

n2

n−1∑
j=0

 n−1∑
i=j+1

(I− ηH)i−jE
[
M0,j∆0∆T

0 MT
0,j

]
=

1

n2

n−1∑
i=0

E
[
M0,i∆0∆T

0 MT
0,i

]
+

n−1∑
i=0

 n−1∑
j=i+1

(
E
[
M0,i∆0∆T

0 MT
0,i

]
(I− ηH)j−i + (I− ηH)j−iE

[
M0,i∆0∆T

0 MT
0,i

])
=

1

n2

n−1∑
i=0

E
[
M0,i∆0∆T

0 MT
0,i

]
+

n−1∑
i=0

(
E
[
M0,i∆0∆T

0 MT
0,i

] (
(I− ηH)− (I− ηH)n−i

)
(ηH)−1

)
+

n−1∑
i=0

(
(ηH)−1

(
(I− ηH)− (I− ηH)n−i

)
E
[
M0,i∆0∆T

0 MT
0,i

])
(1.2.2)

To simplify (1.2.2) further, we can use the definition of T . Let A be any matrix, then

E
[
(I− ηxixTi )A(I − ηxixTi )

]
= A− η(AH + HA) + η2E

[
(xTAx)xxT

]
= (I− ηHR − ηHL + η2M)A

= (I− ηT )A

∴ E
[
M0,i∆0∆T

0 MT
0,i

]
= (I− ηT )iE0 (1.2.3)

where E0 = ∆0∆T
0 . Using (1.2.3) in (1.2.2) we get

E
[
∆̄n∆̄T

n

]
=

1

n2

n−1∑
i=0

(I − ηT )iE0 +

n−1∑
i=0

(
(I− ηT )iE0

(
(I− ηH)− (I− ηH)n−i

)
(ηH)−1

)
+

n−1∑
i=0

(
(ηH)−1

(
(I− ηH)− (I− ηH)n−i

)
(I− ηT )iE0

)
=

1

n2

n−1∑
i=0

(I− ηT )iE0 +
(
(I− ηH)R − (I− ηH)n−iR

)
(ηHR)−1(I− ηT )iE0

+

n−1∑
i=0

(
(I− ηH)L − (I− ηH)n−iL

)
(ηHL)−1(I− ηT )iE0
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=
1

n2

n−1∑
i=0

[
I +

(
(I− ηH)L − (I− ηH)n−iL

)
(ηHL)−1 +

(
(I− ηH)R − (I− ηH)n−iR

)
(ηHR)−1

]
(I− ηT )iE0

(1.2.4)

We can now try to analyze separate term in (1.2.4). Let us define An as

An = − 1

n2

n∑
i=0

[
(ηHR)−1(I− ηH)n−iR + (ηHL)−1(I− ηH)n−iL

]
(I− ηT )iE0 (1.2.5)

Using (1.2.4) and (1.2.5) we have

E
[
∆n∆T

n

]
=

1

n2

n∑
i=0

[
I + (I− ηH)L(ηHL)−1 + (I− ηH)R(ηHR)−1

]
(I− ηT )iE0 +An

=
1

n2

n∑
i=0

[
I +

1

η
(H−1L − ηI) +

1

η
(H−1R − ηI)

]
(I− ηT )iE0 +An

=
1

ηn2
[
H−1L +H−1R − ηI

] n−1∑
i=0

(I− ηT )iE0 +An

=
1

η2n2
[
H−1L +H−1R − ηI

]
T −1 [I− (I− ηT )n] E0 +An (1.2.6)

Defining Bn as

Bn = − 1

η2n2
[
H−1L +H−1R − ηI

]
T −1(I− ηT )nE0 (1.2.7)

Using (1.2.7) in (1.2.6) we get

E
[
∆n∆T

n

]
=

1

η2n2
[
H−1L +H−1R − ηI

]
T −1E0 +An +Bn (1.2.8)

We will now analyze the Frobenius norms of An and Bn and show that they decay exponentially.

‖An‖F =
1

n2

∥∥∥∥∥
n∑
i=0

[
(ηHR)−1(I− ηH)n−iR + (ηHL)−1(I− ηH)n−iL

]
(I− ηT )iE0

∥∥∥∥∥
F

≤ 1

n2

n∑
i=0

∥∥[(ηHR)−1(I− ηH)n−iR + (ηHL)−1(I− ηH)n−iL

]
(I− ηT )iE0

∥∥
F

≤ 1

n2

n∑
i=0

∥∥(ηHR)−1(I− ηH)n−iR (I− ηT )iE0
∥∥
F

+
∥∥(ηHL)−1(I− ηH)n−iL (I− ηT )iE0

∥∥
F

≤ 1

n2

n∑
i=0

[
1

η

∥∥H−1R ∥∥op ‖(I− ηH)R‖n−iop ‖I− ηT ‖
i
op ‖E0‖F +

1

η

∥∥H−1L ∥∥op ‖(I− ηH)L‖n−iop ‖I− ηT ‖
i
op ‖E0‖F

]

=
ρn

ηn2

n∑
i=0

[∥∥H−1R ∥∥op +
∥∥H−1L ∥∥op] ‖E0‖F (1.2.9)

From the definition of operator norms of tensors

∥∥H−1R ∥∥op = sup
A6=0

∥∥H−1R A
∥∥
F

‖A‖F
= sup

A 6=0

∥∥AH−1
∥∥
F

‖A‖F
≤ sup

A6=0

‖A‖2
∥∥H−1∥∥

F

‖A‖F
=
∥∥H−1∥∥

F
≤ d

µ
(1.2.10)

∥∥H−1L ∥∥op = sup
A 6=0

∥∥H−1L A
∥∥
F

‖A‖F
= sup

A 6=0

∥∥H−1A∥∥
F

‖A‖F
≤ sup

A6=0

∥∥H−1∥∥
2
‖A‖F

‖A‖F
=
∥∥H−1∥∥

2
≤ 1

µ
(1.2.11)

Combining (1.2.10) and (1.2.11) we get∥∥H−1R ∥∥op +
∥∥H−1L ∥∥op ≤ d+ 1

µ
≤ 2d

µ
(1.2.12)
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Using (1.2.12) in (1.2.9) we have

‖An‖F ≤
2dρn

nηµ
(1.2.13)

Assuming η ≤ 2
Tr[H] ≤

2
ρH
≤ 2

µ , we have
∥∥H−1L +H−1R − ηI

∥∥
op
≤ d

(
2
µ − η

)
. Therefore, we can bound the Frobenius

norm of Bn as

‖Bn‖F ≤
dρn

η2n2µT

(
2

µ
− η
)
‖E0‖F (1.2.14)

Using (1.2.13) and (1.2.14) we get

‖An +Bn‖F ≤
dρn

ηn

(
2

µ
+

1

nµT η

(
2

µ
− η
))

(1.2.15)

Therefore if ρ < 1, then term An +Bn goes to 0 exponentially. Then (1.2.8) becomes

E
[
∆n∆T

n

]
=

1

η2n2
[
H−1L +H−1R − ηI

]
T −1E0 +O

(
ρn

n

)
(1.2.16)

Asymptotically we can write the bias term as

lim
n→∞

n2Tr
[
HE

[
∆0∆T

0

]]
= lim
n→∞

Tr

[
1

η2
H(H−1L +H−1R − ηI)T −1E0

]
=

1

η2
∆T

0 H∆0 (1.2.17)

1.3 Variance term

Consider stating at the solution itself, i.e., ∆0 = 0, then we are only left with the variance term that depends on
the distribution of εi’s. In that case re-writing (1.1.3),

∆n =
η

n

n−1∑
k=1

n−1∑
j=k

Mk,j

xkεk (1.3.1)

Therefore,

E
[
∆n∆T

n

]
=
η2

n2
E

n−1∑
k=1

n−1∑
j=k

Mk,j

xkε
2
kx

T
k

n−1∑
p=k

MT
k,p

 (1.3.2)

For notational simplicity, let us denote Σk = xkε
2
kx

T
k . Then we can re-write (1.3.2) as

E
[
∆n∆T

n

]
=
η2

n2

n−1∑
k=1

n−1∑
j=k

n−1∑
p=k

E
[
Mk,jΣkM

T
k,p

]

=
η2

n2

n−1∑
k=1

 ∑
j>p≥k

E
[
Mp,jMk,pΣkM

T
k,p

]
+
∑
k≤j<p

E
[
Mk,jΣkM

T
k,jM

T
p,j

]
+

n−1∑
l=k

E
[
Mk,lΣkM

T
k,l

]
=
η2

n2

n−1∑
k=1

 ∑
j>p≥k

(I− ηH)j−pE
[
Mk,pΣkM

T
k,p

]
+
∑
k≤j<p

E
[
Mk,jΣkM

T
k,j

]
(I− ηH)p−j +

n−1∑
l=k

E
[
Mk,lΣkM

T
k,l

]
=
η2

n2

n−1∑
k=1

n−1∑
p=k

 n−1∑
j=p+1

(I− ηH)j−p

E
[
Mk,pΣkM

T
k,p

]
+

n−1∑
j=k

E
[
Mk,jΣkM

T
k,j

] n−1∑
p=j+1

(I− ηH)p−j


+
η2

n2

n−1∑
k=1

[
n−1∑
l=k

E
[
Mk,lΣkM

T
k,l

]]
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=
η2

n2

n−1∑
k=1

n−1∑
p=k

[
(I− ηH)− (I− ηH)n−p

]
(ηH)−1E

[
Mk,pΣkM

T
k,p

]
+
η2

n2

n−1∑
k=1

n−1∑
j=k

E
[
Mk,jΣkM

T
k,j

] [
(I− ηH)− (I− ηH)n−j

]
(ηH)−1 +

n−1∑
l=k

E
[
Mk,lΣkM

T
k,l

]
=
η2

n2

n−1∑
k=1

n−1∑
p=k

[
(I− ηH)− (I− ηH)n−p

]
(ηH)−1(I− ηT )p−kΣ0

 (
Where Σ0 = E

[
ε2xxT

])

+
η2

n2

n−1∑
k=1

n−1∑
j=k

(I− ηT )j−kΣ0

[
(I− ηH)− (I− ηH)n−j

]
(ηH)−1 +

n−1∑
l=k

(I− ηT )l−kΣ0


=
η2

n2

n−1∑
k=1

n−1∑
j=k

[
(I− ηT )j−kΣ0 +

[
(I− ηH)− (I− ηH)n−j

]
(ηH)−1(I− ηT )j−kΣ0

]
+
η2

n2

n−1∑
k=1

n−1∑
j=k

[
(I− ηT )j−kΣ0

[
(I− ηH)− (I− ηH)n−j

]
(ηH)−1

]
=
η2

n2

n−1∑
j=1

j∑
k=1

[
(I− ηT )j−kΣ0 +

[
(I− ηH)− (I− ηH)n−j

]
(ηH)−1(I− ηT )j−kΣ0

]
+
η2

n2

n−1∑
j=1

j∑
k=1

[
(I− ηT )j−kΣ0

[
(I− ηH)− (I− ηH)n−j

]
(ηH)−1

]
(Re-arranging summations)

=
η2

n2

n−1∑
j=1

[[
I− (I− ηT )j

]
(ηT )−1Σ0 +

[
(I− ηH)− (I− ηH)n−j

]
(ηH)−1

[
I− (I− ηT )j

]
(ηT )−1Σ0

]
+
η2

n2

n−1∑
j=1

[[
I− (I− ηT )j

]
(ηT )−1Σ0

[
(I− ηH)− (I− ηH)n−j

]
(ηH)−1

]
=
η2

n2

n−1∑
j=1

[[
I− (I− ηT )j

]
(ηT )−1Σ0 +

[
(I− ηH)L − (I− ηH)n−jL

]
(ηHL)−1

[
I− (I− ηT )j

]
(ηT )−1Σ0

]

+
η2

n2

n−1∑
j=1

[
(I− ηH)R − (I− ηH)n−jR

]
(ηHR)−1

[
I− (I− ηT )j

]
(ηT )−1Σ0

=
η2

n2

n−1∑
j=1

[
I− (I− ηT )j

]
(ηT )−1Σ0

+
η2

n2

n−1∑
j=1

[[
(I− ηH)L − (I− ηH)n−jL

]
(ηHL)−1 +

[
(I− ηH)R − (I− ηH)n−jR

]
(ηHR)−1

] [
I− (I− ηT )j

]
(ηT )−1Σ0

(1.3.3)

We can now try to analyze separate terms in (1.3.3). Let us define Cn as

Cn =
η2

n2

n−1∑
j=1

[
(I − ηH)n−jL (ηHL)−1 + (I − ηH)n−jR (ηHR)−1

]
(I− ηT )j(ηT )−1Σ0 (1.3.4)

Using the definition of Cn, (1.3.3) becomes

E
[
∆n∆T

n

]
=
η2

n2

n−1∑
j=1

[
I− (I− ηT )j

]
(ηT )−1Σ0

+
η2

n2

n−1∑
j=1

[
(I− ηH)L(ηHL)−1 + (I− ηH)R(ηHR)−1

] [
I− (I− ηT )j

]
(ηT )−1Σ0 + Cn
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=
η2

n2
[
I + (I− ηH)L(ηHL)−1 + (I− ηH)R(ηHR)−1

] n−1∑
j=1

(
I− (I− ηT )j

)
(ηT )−1Σ0 + Cn

=
η

n2
[
I + (ηHL)−1 − I + (ηHR)−1 − I

] n−1∑
j=1

(
I− (I− ηT )j

)
T −1Σ0 + Cn

=
1

n2
[
H−1L +H−1R − ηI

] n−1∑
j=1

(
I− (I− ηT )j

)
T −1Σ0 + Cn (1.3.5)

Let us define Dn as

Dn = − 1

n2
[
H−1L +H−1R − ηI

] n−1∑
j=1

(I− ηT )jT −1Σ0

= − 1

ηn2
[
H−1L +H−1R − ηI

]
[(I− ηT )− (I− ηT )n] T −2Σ0 (1.3.6)

Further, lets define En as

En =
1

ηn2
[
H−1L +H−1R − ηI

]
(I− ηT )nT −2Σ0 (1.3.7)

Using (1.3.6) and (1.3.7) in (1.3.5), we get

E
[
∆n∆T

n

]
=

1

n

[
H−1L +H−1R − ηI

]
T −1Σ0 −

1

ηn2
[
H−1L +H−1R − ηI

]
(I− ηT )T −2Σ0 + Cn + En (1.3.8)

We will now analyze the Frobenius norms of Cn and En and show that they decay exponentially.

‖Cn‖F ≤
η2

n2

n−1∑
j=1

∥∥∥[(I − ηH)n−jL (ηHL)−1 + (I − ηH)n−jR (ηHR)−1
]

(I− ηT )j(ηT )−1Σ0

∥∥∥
F

≤ η2

n2

n−1∑
j=1

[
‖I− ηHL‖n−jop

∥∥(ηHL)−1
∥∥
op
‖I− ηT ‖jop

∥∥(ηT )−1
∥∥
op
‖Σ0‖F

]

+
η2

n2

n−1∑
j=1

[
‖I− ηHR‖n−jop

∥∥(ηHR)−1
∥∥
op
‖I− ηT ‖jop

∥∥(ηT )−1
∥∥
op
‖Σ0‖F

]
≤ η2ρn

n2η2
‖Σ0‖F n

[∥∥H−1L ∥∥op ∥∥T −1∥∥op +
∥∥H−1R ∥∥op ∥∥T −1∥∥op]

≤ ρn

nµT
‖Σ0‖F

[∥∥H−1L ∥∥op +
∥∥H−1R ∥∥op]

≤ 2dρn

nµµT
‖Σ0‖F (1.3.9)

Similarly,

‖En‖F ≤
1

ηn2
∥∥[H−1L +H−1R − ηI

]
(I− ηT )nT −2Σ0

∥∥
F

≤ dρnT
ηµ2

Tn
2

(
2

µ
− η
)
‖Σ0‖F (1.3.10)

Using (1.3.9) and (1.3.10) we get

‖Cn + En‖F ≤
2dρn

nµµT
‖Σ0‖F +

dρnT
ηµ2

Tn
2

(
2

µ
− η
)
‖Σ0‖F

≤ dρn

n
‖Σ0‖F

[
2

µµT
+

1

nηµ2
T

(
2

µ
− η
)]

(1.3.11)
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Using (1.3.11) we have

E
[
∆n∆T

n

]
=

1

n

[
H−1L +H−1R − ηI

]
T −1Σ0 −

1

ηn2
[
H−1L +H−1R − ηI

]
(I− ηT )T −2Σ0 +O

(
ρn

n

)
(1.3.12)

Taking limits we get

lim
η→0

nTr
[
HE

[
∆n∆T

n

]]
' E

[
εxTH−1x

]
(1.3.13)

Further if ε and x are independent, and if E
[
ε2
]

= σ2, we get

lim
n→∞

nTr
[
HE

[
∆n∆T

n

]]
' dσ2 (1.3.14)

which matches the Cramer-Rao bound for such a problem.
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